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Appointing Rogoff’s (1985) conservative central banker improves welfare if the economy is

subject to large contractionary shocks and the policy rate occasionally falls to the zero lower

bound (ZLB). In an economy with occasionally binding ZLB constraints, the anticipation of

future ZLB episodes creates a trade-off between inflation and output stabilization. As a con-

sequence, inflation systematically falls below target even when the policy rate is above zero.

A conservative central banker mitigates this deflationary bias away from the ZLB, improving

allocations both at and away from the ZLB through expectations.
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1 Introduction

Over the past few decades, a growing number of central banks around the world have adopted in-

flation targeting as a policy framework. The performance of inflation targeting in practice has been

widely considered a success.1 However, some economists and policymakers have voiced the need

to re-examine central banks’ monetary policy frameworks in light of the liquidity trap conditions

currently prevailing in many advanced economies.2 As shown in Eggertsson and Woodford (2003)

among others, the zero lower bound (ZLB) on nominal interest rates severely limits the ability of

inflation-targeting central banks to stabilize the economy absent an explicit commitment technol-

ogy.3 Some argue that the ZLB is likely to bind more frequently and that liquidity trap episodes

might hit the economy more severely in the future than they have in the past.4 Understanding the

implications of the ZLB for the conduct of monetary policy is therefore of the utmost importance

for economists and policymakers alike.

In this paper, we contribute to this task by examining the desirability of Rogoff’s (1985) con-

servative central banker in a standard New Keynesian model in which large contractionary shocks

occasionally push the policy rate to the ZLB. Rogoff (1985) showed that in a model where a lack of

commitment leads to an inflation bias, society can be better off if the central bank is less concerned

with output gap stability relative to inflation stability than is society. To focus on the role of the

ZLB, we abstract from the original inflation bias by assuming that the steady-state distortions are

eliminated by appropriate subsidies. Society’s welfare is then given by the negative of the weighted

sum of inflation and output volatility. We analyze how the economy behaves under a discretionary

central banker with an alternative weight on output volatility, and we compute the optimal weight

that maximizes society’s welfare.

We find that the appointment of a fully conservative central banker—that is, a banker who

places zero weight on output stabilization—is optimal in our baseline model, which features only

a demand shock. That is, society’s welfare is maximized when the central bank focuses exclusively

on inflation stabilization. The mechanism behind our result is as follows. In the economy in which

future shocks can push the policy rate to the lower bound, the anticipation of lower inflation and

output gives forward-looking households and firms incentives to reduce consumption and prices even

when the policy rate is above the ZLB. The central bank cannot fully counteract these incentives.

When the central bank is concerned with both inflation and output stabilization, it faces a trade-off

between the two objectives, implying deflation and a positive output gap in those states where the

ZLB is not binding. Following the terminology of Nakov (2008), we will refer to this deflation when

the policy rate is above zero as deflationary bias.

A central banker who puts comparatively more weight on inflation stabilization mitigates the

deflation bias away from the ZLB at the cost of a potentially higher output gap. Viewed in isolation,

1See, for instance, Walsh (2009) and Svensson (2010), and the references therein.
2See, for example, Blanchard, Dell’ariccia, and Mauro (2010); Tabellini (2014); Williams (2014).
3See also Jung, Teranishi, and Watanabe (2005), Adam and Billi (2007), and Nakov (2008).
4See, for example, IMF (2014) and Chung, Laforte, Reifschneider, and Williams (2012).
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this is welfare-reducing because it shifts inflation and output gap realizations away from the welfare-

implied target criteria. However, lower deflation and higher output gaps away from the ZLB also

reduce expected real interest rates and increase the expected marginal costs at the ZLB, mitigating

deflation and output declines there. This in turn allows the central bank to achieve zero inflation

with a smaller positive output gap away from the ZLB, setting in motion a positive feedback loop.

We prove analytically the optimality of placing zero weight on output stabilization for the baseline

version of our model in which the demand shock follows a two-state Markov process, and we confirm

this result numerically for a version of the model with a first order autoregressive shock process.

The desirability of conservatism is robust to introducing cost-push shocks into the economy, but

the optimal weight on output stabilization may no longer be zero. In the model with demand shocks

and cost-push shocks, the optimal weight would coincide with society’s weight in the absence of the

ZLB. Accounting for the ZLB, the optimal weight lies between zero and society’s weight, as long

as the cost-push shock is sufficiently small and the demand shock is the key driver of liquidity trap

episodes. The greater the frequency of the ZLB episodes, the closer the optimal weight is to zero.

This observation makes intuitive sense and is reminiscent of the finding in Coibion, Gorodnichenko,

and Wieland (2012) that the effect of the ZLB on the optimal inflation target is larger when the

ZLB constraint binds more frequently.

Our result may initially strike some readers as counterintuitive. The desirability of assigning

a higher weight on the inflation objective was shown originally in a framework in which the lack

of an explicit commitment technology leads to inflation that is too high. The problem of the

economy facing the ZLB constraint is the opposite—inflation that is too low—which may lead

one to conjecture that the opposite prescription of assigning a lower weight on inflation would be

desirable.5 Our analyses show that this is not the case. In describing why, we trace out the beneficial

effects of stabilizing inflation expectations, which are central to understanding the desirability of

the conservative central bank in the original model of Rogoff (1985) as well.

A valuable byproduct of our analysis of conservatism is a closed-form characterization of the

conditions that guarantee the existence of the standard Markov-Perfect equilibrium with occasion-

ally binding ZLB constraints. Some researchers have reported difficulty in obtaining numerical

convergence when solving the model with the ZLB and have suggested that equilibrium under

some parameter configurations does not exist.6 Yet not much is known about the conditions for

equilibrium existence. We prove that the equilibrium ceases to exist when the frequency and

persistence of crisis shocks are sufficiently high, and we provide analytical expressions for the fre-

quency and persistence thresholds at which this occurs. This result should be a useful reference for

those who numerically solve the New Keynesian model with occasionally binding ZLB constraints.

While our analysis focuses on the standard Markov-Perfect equilibrium that fluctuates around a

positive nominal interest rate so that the ZLB constraint binds only occasionally, there exists a

5Tabellini (2014), for example, conjectures that a lower weight on the output stability objective is detrimental to
stabilization policy in the model that incorporates the ZLB constraint.

6See, for example, Adam and Billi (2007) and Billi (2013) for the non-convergence result under the Markov-Perfect
equilibrium and Richter and Throckmorton (2014) under the Taylor-rule equilibrium.
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second Markov-Perfect equilibrium in which the nominal interest rate is at zero permanently. In

the Appendix, we also provide analytical characterizations of the conditions for the existence of

this deflationary Markov-Perfect equilibrium.

Our paper is related to a set of papers that have examined various ways to improve allocations

at the ZLB in time-consistent manners. Eggertsson (2006), Burgert and Schmidt (2014), and

Bhattarai, Eggertsson, and Gafarov (2014) considered economies in which the government can

choose the level of nominal debt and showed that an increase in government bonds during the

liquidity trap improves allocations by creating incentives for future governments to inflate. In

a model in which government spending is valued by the household, Nakata (2013) and Schmidt

(2013) showed that a temporary increase in government spending can improve welfare whenever

the policy rate is stuck at the ZLB.7 A key characteristic of these proposals is that they involve

additional policy instruments and require perfect coordination of monetary and fiscal authorities.

The approach studied in our paper only requires that the central bank is maximizing its assigned

objective.

A few recent papers examine other time-consistent ways to better stabilize inflation and output

in the model with the ZLB constraint without relying on additional policy instruments. Nakata

(2014) demonstrates that a reputational concern on the part of the central bank can make the

promise of overshooting inflation and output time-consistent. Billi (2013) revisits the desirability

of assigning a nominal-income stabilization objective to the central bank. In our ongoing work, we

compare the relative benefits of various alternative objectives, including price-level stabilization,

nominal-income stabilization, and interest-rate smoothing (Nakata and Schmidt, 2014).

This paper is also related to a set of papers that examine the desirability of Rogoff’s conservative

central banker in settings other than the original model with inflation bias. Clarida, Gali, and

Gertler (1999) showed that the appointment of a conservative central banker is also desirable in a

New Keynesian model, in which the presence of persistent cost-push shocks creates a stabilization

bias in discretionary monetary policy—that is, an inferior short-run trade-off between inflation and

output stabilization compared with the time-inconsistent Ramsey policy. Adam and Billi (2008),

Adam and Billi (2014), and Niemann (2011) examined the benefit of conservatism in versions of

New Keynesian models augmented with endogenous fiscal policy. However, all of these authors

have abstracted from the ZLB constraint.

Finally, our analyses of the conditions that guarantee the existence of standard and deflationary

Markov-Perfect equilibria are related to the analyses by Tambakis (2014) and Armenter (2014).

Tambakis (2014) characterizes the conditions that guarantee the existence of the standard Markov-

Perfect equilibrium while assuming that the probability of the crisis shock does not depend on the

state of the economy. We extend his results by considering both standard and deflationary Markov-

Perfect equilibria and allowing for state dependence in the distribution of shocks. Armenter (2014)

shows that the deflationary Markov-Perfect equilibrium exists in an economy with n-state Markov

7Schmidt (2014) examines what type of fiscal policymaker is best suited for dealing with liquidity traps in the
absence of policy commitment. He finds that an activist fiscal authority that cares less about government consumption
stability relative to output gap and inflation stability than society does is welfare-improving.
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shocks if and only if the standard Markov-Perfect equilibrium exists, but he is silent about the

conditions under which these equilibria exist. We focus on an economy with two-state Markov

shocks and provide a complete characterization of the conditions for the existence of both types of

Markov-Perfect equilibria.8

The rest of the paper is organized as follows. Section 2 describes the model and the gov-

ernment’s optimization problem, and defines the welfare measure. Section 3 presents the main

results. Section 4 extends the analysis to a model with both demand and cost-push shocks and to

a continuous-state model. The final section concludes.

2 The model

This section presents the model, lays down the policy problem of the central bank and defines the

equilibrium.

2.1 Private sector

The private sector of the economy is given by the standard New Keynesian structure formulated in

discrete time with infinite horizon as developed in detail in Woodford (2003) and Gali (2008). A

continuum of identical, infinitely-living households consumes a basket of differentiated goods and

supplies labor in a perfectly competitive labor market. The consumption goods are produced by

firms using (industry-specific) labor. Firms maximize profits subject to staggered price-setting as

in Calvo (1983). Following the majority of the literature on the ZLB, we put all model equations

except for the ZLB constraint in semi-loglinear form. This allows us to derive closed-form results.

The equilibrium conditions of the private sector are given by the following two equations:

πt = κyt + βEtπt+1 (1)

and

yt = Etyt+1 − σ (it − Etπt+1 − r∗) + dt. (2)

where πt is the inflation rate between period t − 1 and t, yt denotes the output gap, it is the

level of the nominal interest rate between period t and t + 1, and dt is an exogenous demand

shock capturing fluctuations in the natural real rate of interest, rt := r∗ + 1
σdt. Equation (1) is

a standard New Keynesian Phillips curve and equation (2) is the consumption Euler equation.

8Several studies have characterized the conditions for the existence of Taylor-rule equilibria in models with the
ZLB. Eggertsson (2011) and Braun, Körber, and Waki (2013) characterize the conditions guaranteeing the existence
of a Taylor-rule equilibrium in a semi-loglinear model, assuming that the economy eventually reverts back to an
absorbing state and the ZLB does not bind in the absorbing state. Christiano and Eichenbaum (2012) analyzed the
existence and multiplicity of Taylor-rule equilibria in a fully nonlinear model, again assuming the eventual return
to the steady-state where the ZLB does not bind. Mendes (2011) characterizes the conditions for the existence of
the standard and deflationary Taylor-rule equilibria in a fully stochastic semi-loglinear New Keynesian economy,
assuming that the process for the natural rate of interest has no persistence. In an early contribution, Benhabib,
Schmitt-Grohe, and Uribe (2001) show the existence of two steady-states in a sticky-price economy that abstracts
from fundamental shocks.
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The parameters are defined as follows: β ∈ (0, 1) denotes the representative household’s subjective

discount factor, σ > 0 is the intertemporal elasticity of substitution in consumption, and r∗ = 1
β −1

is the deterministic steady state of the natural real rate. κ represents the slope of the New Keynesian

Phillips curve and is related to the structural parameters of the economy as follows:

κ =
(1− α) (1− αβ)

α (1 + ηθ)

(
σ−1 + η

)
, (3)

where α ∈ (0, 1) denotes the share of firms that cannot reoptimize their price in a given period,

η > 0 is the inverse of the elasticity of labor supply, and θ > 1 denotes the price elasticity of

demand for differentiated goods.

We assume that the demand shock dt follows a two-state Markov process, as in Eggertsson and

Woodford (2003) and others, which allows us to reveal the underlying mechanism in a simple and

intuitive way. In particular, dt takes the value of either dH or dL where we refer to dH > −σr∗ as

the high state and dL < −σr∗ as the low state. The transition probabilities are given by

Prob(dt+1 = dL|dt = dH) = pH (4)

and

Prob(dt+1 = dL|dt = dL) = pL. (5)

pH is the probability of moving to the low state in the next period when the economy is in the

high state today and will be referred to as the frequency of the contractionary shocks. pL is the

probability of staying in the low state when the economy is in the low state today and will be

referred to as the persistence of the contractionary shocks. We will also refer to high and low states

as non-crisis and crisis states, respectively.

In Section 4, we extend the analysis to a continuous-state model in which the demand shock

follows a stationary autoregressive process.

2.2 Society’s objective and the central bank’s problem

We assume that society’s value, or welfare, at time t is given by the expected discounted sum of

future utility flows,

Vt = u(πt, yt) + βEtVt+1, (6)

where society’s contemporaneous utility function, u(·, ·), is given by the standard quadratic function

of inflation and the output gap,

u(π, y) = −1

2

(
π2 + λ̄y2

)
. (7)

This objective function can be motivated by a second-order approximation to the household’s

preferences. In such a case, λ̄ is a function of the structural parameters and is given by λ̄ = κ
θ .

The value for the central bank is given by
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V CB
t = uCB(πt, yt) + βEtV

CB
t+1 . (8)

where the central bank’s contemporaneous utility function, uCB(·, ·), is given by

uCB(π, y) = −1

2

(
π2 + λy2

)
. (9)

Note that, while the central bank’s objective function resembles the private sector’s, the relative

weight that it attaches to the stabilization of the output gap, λ ≥ 0, may differ from λ̄. We assume

that the central bank does not have a commitment technology. Each period t, the central bank

chooses the inflation rate, the output gap, and the nominal interest rate in order to maximize

its objective function subject to the behavioral constraints of the private sector, with the policy

functions at time t+ 1 taken as given. The problem of the central bank is thus given by

V CB
t (dt) = max

πt,yt,it
uCB(πt, yt) + βEtV

CB
t+1 (dt+1). (10)

subject to the zero lower bound constraint,

it ≥ 0, (11)

and the private-sector equilibrium conditions (1) and (2) described above.

A Markov-Perfect equilibrium is defined as a set of time-invariant value and policy functions

{V CB(·), y(·), π(·), i(·)} that solves the central bank’s problem above, together with society’s

value function V (·), which is consistent with y(·) and π(·). As discussed in Armenter (2014) and

Nakata (2014), there are two Markov-Perfect equilibria in this economy: One fluctuates around a

positive nominal interest rate and zero inflation/output (the standard Markov-Perfect equilibrium),

and the other fluctuates around a zero nominal interest rate and negative inflation/output (the

deflationary Markov-Perfect equilibrium). While the deflationary Markov-Perfect equilibrium is

interesting, we focus on the standard Markov-Perfect equilibrium in this paper. In most economies

that have recently faced a liquidity trap, long-run inflation expectations have been well anchored to

some positive rate and various survey data strongly suggests that private-sector agents expect the

central bank to eventually raise the policy rate. Thus, the standard Markov-Perfect equilibrium

seems to be more relevant on empirical grounds.9

The main exercise of the paper will be to examine the effects of λ on welfare. We quantify

the welfare of an economy by the perpetual consumption transfer (as a share of its steady state)

that would make a household in the economy indifferent to living in the economy without any

fluctuations. This is given by

W := (1− β)
θ

κ

(
σ−1 + η

)
E[V ]. (12)

9An exception is Japan where the policy rate has been at the ZLB for more than a decade.
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where the mathematical expectation is taken with respect to the unconditional distribution of dt.

3 Results

After providing conditions for the existence of the standard Markov-Perfect equilibrium, this section

shows how output and inflation in the two states depend on the central bank’s relative weight on

output stabilization λ and shows that λ = 0 is optimal. The second part of this section provides a

numerical illustration.

The standard Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations—

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + r∗

]
+ dH , (13)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (14)

0 = λyH + κπH , (15)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + r∗

]
+ dL, (16)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (17)

and

iL = 0, (18)

—and satisfies the following two inequality constraints:

iH > 0 (19)

and

λyL + κπL < 0. (20)

For any variable x, xk denotes the value of that variable in the k state where k ∈ {H,L}. The

first inequality constraint checks the nonnegativity of the nominal interest rate in the high state,

and the second checks nonpositivity of the Lagrangean multiplier on the ZLB constraint in the low

state.

The model can be solved in closed form. We first prove key properties of the model and then

move on to numerical analyses.

3.1 Analytical results

Proposition 1: The standard Markov-Perfect equilibrium exists if and only if

pL ≤ p∗L(Θ(−pL))
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and

pH ≤ p∗H(Θ(−pH)),

where i) for any parameter x, Θ(−x) denotes the set of parameter values excluding x, and ii) the

cutoff values p∗L(Θ(−pL)) and p∗H(Θ(−pH)) are given in Appendix A.

See Appendix A for the proof. The two conditions guarantee the nonpositivity of the Lagrange

multiplier in the crisis state and the nonnegativity of the nominal interest rate in the non-crisis

state, respectively. When the frequency of the contractionary shock, pH , is high, the central

bank reduces the nominal interest rate aggressively to mitigate the deflation bias, which will be

described shortly. Thus, for the policy rate to be positive in the high state, pH must be sufficiently

low. With pL > p∗L(Θ(−pL)), inflation and output in the low state are positive when they satisfy

the consumption Euler equation and the Phillips curve. Though this is somewhat unintuitive, it

makes sense. When the persistence of the crisis, pL, is high, inflation and output in today’s low

state are largely dependent on households’ and firms’ expectations of inflation and output in the

next period’s low state. Thus, positive inflation and output in the low state can be self-fulfilling.

However, such positive inflation and output cannot be an equilibrium because the central bank

would have incentives to raise the nominal interest rate from zero in the low state. This incentive

manifests itself in the positive Lagrangean multiplier in the low state when inflation and output

are positive.10

When the conditions for the existence of the equilibrium hold, the signs of the endogenous

variables are unambiguously determined.

Proposition 2: For any λ ≥ 0, πH ≤ 0, yH > 0, iH < rH , πL < 0, and yL < 0. With λ = 0, πH = 0.

See Appendix A for the proof. In the low state, the ZLB constraint becomes binding, and output

and inflation are below target. In the high state, a positive probability of entering the low state in

the next period reduces expected marginal costs of production and leads firms to lower prices in

anticipation of future crises events. This raises the expected real rate faced by the representative

household and gives it an incentive to postpone consumption. The central bank chooses to lower

the nominal interest rate to mitigate these anticipation effects. In equilibrium, inflation and output

in the high state are negative and positive, respectively, and the non-crisis policy rate is below the

real interest rate. These analytical results are consistent with the numerical results in the literature

(see Nakov (2008), among others). In particular, negative inflation away from the ZLB has been

referred to as deflationary bias. This proposition provides the first analytical underpinning for the

deflation bias.11

10The conditions for the existence of the other Markov-Perfect equilibrium turn out to be identical to those for the
existence of the standard Markov-Perfect equilibrium; see Appendix E.

11Note that the deflation bias vanishes when the high state is an absorbing state—i.e., pH = 0. pH = 0 is often
assumed in literature on the ZLB that works with discrete-state models. See, for instance, Eggertsson and Woodford
(2003) and Christiano, Eichenbaum, and Rebelo (2011).
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We now establish several results on how the degree of conservatism affects endogenous variables

in both states.

Proposition 3: For any λ ≥ 0, ∂πH
∂λ < 0, ∂πL

∂λ < 0, and ∂yL
∂λ < 0. For any λ ≥ 0, ∂yH

∂λ < 0 if and

only if βpH − (1− β)
(

1−pL
κσ (1− βpL + βpH)− pL

)
< 0.

See Appendix A for the proof. ∂πH
∂λ < 0 means that, as the central bank cares more about inflation,

inflation in the high state is higher (i.e., the deflation bias in the high state is smaller). Since a

lower rate of deflation in the high state increases output and inflation in the low state via expecta-

tions, inflation and output in the low state both increase with the degree of conservatism (∂πL∂λ < 0

and ∂yL
∂λ < 0). The effect of conservatism on output in the high state is ambiguous. On the one

hand, a more conservative central bank is willing to tolerate a larger overshooting of output given

the same inflation expectations. On the other hand, higher inflation in both states improves the

trade-off between inflation and output stabilization implied by the Phillips curve, making it possi-

ble to reduce the overshooting of output in the non-crisis state. Proposition 3 demonstrates that

the former effect dominates the latter if and only if βpH−(1− β)
(

1−pL
κσ (1− βpL + βpH)− pL

)
< 0.

Proposition 4: Suppose that pL and pH are sufficiently low so that pL ≤ p∗L(Θ(−pL)) and

pH ≤ p∗H(Θ(−pH)) for all λ in [0, λ̄]. Then, welfare is maximized at λ = 0.

See Appendix A for the proof. As demonstrated in Proposition 3, deflation in the high state is

smaller and inflation and output decline less in the low state with a smaller λ. These forces work

to improve society’s welfare. If βpH − (1− β)
(

1−pL
κσ (1− βpL + βpH)− pL

)
> 0, then output in

the high state becomes smaller with a smaller λ and the optimality of zero weight is obvious. If

βpH − (1− β)
(

1−pL
κσ (1− βpL + βpH)− pL

)
< 0, then a smaller λ increases the already positive

output gap and thus has ambiguous effects on welfare. Proposition 4 demonstrates that, even in

this case, the beneficial effects of a smaller λ on πH , πL, and yL dominate the adverse effect on

yH .12

3.2 Numerical illustration

We now illustrate the aforementioned properties of the model with specific parameter values. The

structural parameters are calibrated using the parameter values from Eggertsson and Woodford

(2003), as listed in Table 1. The frequency of the crisis shock is chosen so that the ZLB episode

occurs once per five decades, on average. The persistence of 0.875 means that the expected duration

of the crisis is two years. The size of the shock is chosen so that the decline in output during the

crisis is 10 percent.

Figure 1 shows how the output gap, inflation, and the nominal interest rate in both states vary

12While the optimal λ is always zero, the welfare gains from conservatism do depend on these parameters. See the
analysis in Appendix B.
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Table 1: Parameterization (Two-state shock model)

Parameter Value Economic interpretation

β 0.99 Subjective discount factor
σ 0.5 Intertemporal elasticity of substitution in consumption
η 0.47 Inverse labor supply elasticity
θ 10 Price elasticity of demand
α 0.8106 Share of firms per period keeping prices unchanged
dH 0 Demand shock in the high state
dL -0.0113 Demand shock in the low state
pH 0.005 Frequency of contractionary demand shock
pL 0.875 Persistence of contractionary demand shock

Figure 1: Output gap, inflation, and nominal interest rate
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Note: The figure displays how the output gap, the inflation rate, and the nominal interest rate in both states vary

with λ. The dashed vertical lines indicate society’s weight, λ̄.
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Figure 2: Welfare
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Note: The figure displays how welfare varies with λ in the two-state shock model. The dashed vertical lines indicate

society’s weight, λ̄.

with the weight on output stabilization, λ. The dashed vertical lines show society’s weight, λ̄.

Consistent with Proposition 2, output and inflation in the high state are positive and negative,

respectively, for any λ. The nominal interest rate is below the natural rate of interest, which is 4

percent. In the low state, output and inflation are negative, and the nominal interest rate is zero.

Consistent with Proposition 3, as λ decreases (i.e., as the central bank becomes more conservative),

the deflation bias in the high state is reduced. This comes at the cost of a higher positive output

gap in the high state, but a smaller deflation bias in the high state mitigates the decline in inflation

and output in the low state.

The benefits of the smaller rate of deflation in the high state and larger output and inflation

in the low state dominate the negative effect of a larger output gap in the high state. Accordingly,

welfare increases with the degree of conservatism, as shown in Figure 2. Consistent with Proposition

4, the optimal weight is zero. In this case, the welfare gain is about 0.05 percent of the efficient

level of consumption. Given that the welfare costs of business cycle fluctuations tend to be very

small in this class of representative agent models, this number is non-trivial. Further analysis in

Appendix B shows that the size of the welfare gain increases with the frequency, persistence, and

size of the crisis shock.

4 Extensions

In this section, we show that the desirability of inflation conservatism is robust to two model

extensions. In the first extension, we augment the baseline discrete-state model with an additional
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shock that affects the supply side of the economy via the New Keynesian Phillips curve. In the

second extension, we consider a continuous-state variant of the baseline model.

4.1 A model with demand and supply shocks

Thus far, the analysis has focused on an economy in which demand shocks are the only source of

uncertainty. We now extend the analysis to an economy that is subject to both demand and supply

shocks. In this case, the New Keynesian Phillips curve becomes

πt = κyt + βEtπt+1 + ut, (21)

where ut is a cost-push shock. We assume that the cost-push shock takes two values, uH = c ≥ 0

and uL = −c, with probability 0.5 regardless of the state today.

Figure 3: Optimal weight in the model with cost-push shocks
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Note: The figure displays how the optimal weight on output stabilization λ depends on the size of the cost-push shock,

and the frequency, persistence and size of the demand shock. Solid vertical lines indicate the baseline calibration.

The top-left panel of Figure 3 shows how the optimal weight varies with the size of the cost-push

shock. While the optimal weight remains zero when the size of the cost-push shock is small, it is

positive for a sufficiently large shock size and increases with the size of the shock.

There are two reasons why the optimal weight increases with the size of the cost-push shock.

First, the optimal weight is equal to the social weight in the model with cost-push shocks but

without demand shocks or the ZLB (see, for example, Clarida, Gali, and Gertler (1999)), while

it is zero in the model without cost-push shocks but with demand shocks and the ZLB. Thus, a
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key determinant of the optimal weight in the model with both demand and cost-push shocks is the

relative importance of these two shocks: the larger the size of the cost-push shock, the closer the

optimal weight is to the social weight. Second, a lower weight on the output gap implies larger

fluctuations in the nominal interest rate in states in which the demand shock is positive, dt = dH .

If the size of the cost-push shock is sufficiently large, then for small weights on output stabilization

λ the ZLB can bind in the high-demand shock state as well. In such a case, the central bank cannot

achieve zero inflation in both of the high-demand shock states and reducing λ further will lead to

a larger deflation bias. In the particular parameterization shown in the figure, the optimal weight

increases with the size of the cost-push shock for the second reason.

One consequence of this result is that the optimal weight decreases with the frequency, per-

sistence, and severity of the demand shock. This can be seen in the top-right, bottom-left, and

bottom-right panels of Figure 3, which show how the optimal weight varies with the frequency,

persistence, and severity of the demand shock when the size of the cost-push shock is held at 0.02
100 .

The optimal weight coincides with the social weight when these parameters are zero, and it declines

as these parameters, and thus the relative importance of the demand shock, increase. Interestingly,

the effects of these parameters on the optimal weight are not monotonic. This is because reducing

the weight on output stabilization can reduce welfare when doing so leads to excessive fluctuations

in the nominal interest rate and causes the ZLB to bind in one of the high-demand shock states.

For sufficiently small values of pH , pL, and |dL|, the optimal weight can be so large that the ZLB

does not bind anywhere near the optimal weight. Marginal increases in these parameters mean

more severe deflation bias and optimal weights are lower as a result. For intermediate values of

pH , pL, and |dL|, marginal increases in these parameters do not lead to a reduction in the optimal

weight because a reduction in the weight placed on output stabilization causes the ZLB to bind in

one of the high-demand shock states. When pH , pL, and |dL| are sufficiently large, the benefit of

reducing the deflation bias dominates the adverse consequences of hitting the ZLB in one of the

high-demand shock states, and the optimal weight on output stabilization becomes zero. Appendix

C extends the analysis to a model with persistent cost-push shocks.

4.2 A continuous-state model

We next examine whether the results from the analysis of the baseline model with a two-state

Markov process for the demand shock also hold true when the shock is allowed to assume a con-

tinuum of values. Specifically, we assume that dt follows a stationary AR(1)-process

dt = ρddt−1 + εdt , (22)

where the parameter ρd represents the persistence of the shock and εdt is an i.i.d. N
(
0, σ2

ε

)
innova-

tion. We employ a projection method to approximate the policy functions numerically. The details

of the solution algorithm are described in Appendix D. The parameters are calibrated using the

values from Adam and Billi (2007), as shown in Table 2.
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Table 2: Parameterization (Continuous-state model)

Parameter Value Economic interpretation

β 0.9913 Subjective discount factor
σ 6.25 Intertemporal elasticity of substitution in consumption
η 0.47 Inverse labor supply elasticity
θ 7.66 Price elasticity of demand
α 0.66 Share of firms per period keeping prices unchanged
ρd 0.8 AR-coefficient demand shock
σε 1.524 Standard deviation demand shock innovation (in %)

Figure 4 shows the approximated policy functions for two alternative central bank regimes.

Under the first regime, the central bank focuses solely on inflation stabilization (i.e., the conservative

regime) as was shown to be optimal in the two-state model. Under the second regime, the central

bank’s preferences are identical to those of society as a whole (i.e., the benchmark regime).

Figure 4: Approximated policy functions (Continuous-state model)
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Note: The figure displays the approximated policy functions for λ = 0 (solid lines) and λ = λ̄ (dashed lines).

When the economy is in a liquidity trap and the natural real rate is negative, inflation and the

output gap in both the conservative regime and the benchmark regime are negative, but as in the

two-state model, the decline in the two target variables is less severe if the central bank is headed

by a conservative policymaker. The larger the adverse shock, the more pronounced is the difference

in the equilibrium responses between the two regimes. Note, however, that in the continuous-state

model, the ZLB is binding not only when the natural real rate of interest is negative but also when it
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Figure 5: Conditional expectations (Continuous-state model)
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Note: The figure displays how the conditional averages of the output gap, the inflation rate and the nominal interest

rate vary with λ. The dashed-dotted line indicates λ̄.
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is close to zero and positive.13 In these states, inflation remains below zero but the output gap can

be either negative or positive. The central bank can offset the direct effect of the natural rate shock

but runs into the ZLB when trying to counteract the combined impact of the natural rate shock and

the downward bias in agents’ expectations. Finally, away from the ZLB, the conservative central

banker perfectly stabilizes inflation at zero. Since inflation expectations are negative in all states

of the world, inflation stability requires a positive output gap. In contrast, under the benchmark

regime the economy is plagued by deflationary bias (i.e., negative inflation rates).

Figure 5 shows how the average inflation rate, output gap and nominal interest rate vary with

the central banker’s weight on output gap stabilization in a state in which the ZLB is not binding

(left column) and in which the ZLB is binding (right column). The dashed vertical lines represent

the averages associated with λ = λ̄. The results are very similar to those in the two-state model;

however, unlike in the numerical example for the two-state model, the average output gap away

from the ZLB is reduced as λ decreases, reflecting a strong feedback mechanism between policy

actions and stabilization outcomes away from the ZLB and stabilization outcomes at the ZLB.

Figure 6: Welfare (Continuous-state model)
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Note: The figure displays how welfare as defined in (12) varies with λ. The dashed-dotted line indicates λ̄.

Finally, Figure 6 shows how welfare as defined in (12) depends on the central banker’s preference

parameter λ. The benchmark regime with λ = λ̄ is indicated by the dashed-dotted line. The welfare

results from the baseline model continue to hold. First, the presence of the occasionally binding ZLB

makes it desirable for society to appoint a conservative central banker. Second, the best-performing

central banker puts zero weight on output gap stability.

13In the two-state model this case was ruled out by the assumption that the nominal interest rate is strictly positive
when the economy is in the normal state.
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5 Conclusion

We have demonstrated, both analytically and numerically, that an economy that experiences occa-

sional ZLB episodes can improve welfare by appointing a conservative central banker who is more

concerned with inflation stabilization relative to output stabilization than society is. In the absence

of policy commitment, optimal monetary policy suffers from a deflationary bias. Inflation stays

below target even when the policy rate is positive because households and firms anticipate that the

ZLB can be binding in the future. Subdued inflation rates away from the ZLB in turn exacerbate

the decline in output and inflation when the economy is in a liquidity trap. A conservative cen-

tral banker counteracts this vicious cycle by mitigating the deflationary bias away from the ZLB,

thereby improving stabilization outcomes at and away from the ZLB.

As a byproduct of our analysis, we provide a closed-form characterization of the conditions that

guarantee the existence of the standard as well as the deflationary Markov-Perfect equilibrium for

the discrete-state version of our model.
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Appendix

A Proofs

In this section, we will provide details of the proofs in the main text. Since the proofs are alge-

braically intensive, we will have to omit some details in this section.

A.1 Proof of Proposition 1

The standard Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations—

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + r∗

]
+ dH (A.1)

πH = κyH + β
[
(1− pH)πH + pHπL

]
(A.2)

0 = λyH + κπH (A.3)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + r∗

]
+ dL (A.4)

πL = κyL + β
[
(1− pL)πH + pLπL

]
(A.5)

and

iL = 0 (A.6)

—and satisfies the following two inequality constraints:

iH > 0 (A.7)

and

φL < 0. (A.8)

φL denotes the Lagrangean multiplier on the ZLB constraint in the low state:

φL := λyL + κπL. (A.9)

We first prove four preliminary propositions (Propositions 1.A–1.D), then use them to prove

the main proposition (Proposition 1) on the necessary and sufficient conditions for the existence of

the standard Markov Perfect equilibrium.
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Let

A(λ) := −βλpH , (A.10)

B(λ) := κ2 + λ(1− β(1− pH)), (A.11)

C :=
(1− pL)

σκ
(1− βpL + βpH)− pL, (A.12)

D := −(1− pL)

σκ
(1− βpL + βpH)− (1− pL) = −1− C, (A.13)

and

E(λ) := A(λ)D −B(λ)C. (A.14)

Assumption 1.A: E(λ) 6= 0.

Throughout the proof, we will assume that Assumption 1.A holds.

Proposition 1.A: There exists a vector {yH , πH , iH , yL, πL, iL} that solves (A.1)–(A.6).

Proof :

Rearranging the system of equations (A.1)–(A.6) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

[
A(λ) B(λ)

C D

][
πL

πH

]
=

[
0

rL

]

⇒

[
πL

πH

]
=

1

A(λ)D −B(λ)C

[
D −B(λ)

−C A(λ)

][
0

rL

]
, (A.15)

where rL = r∗ + 1
σdL.

Thus,

πH :=
A(λ)

E(λ)
rL (A.16)

and

πL :=
−B(λ)

E(λ)
rL. (A.17)

From the Phillips curves in both states, we obtain

yH =
βκpH
E(λ)

rL (A.18)

and

yL = −(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

κE(λ)
rL. (A.19)
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Proposition 1.B: Suppose (A.1)–(A.6) are satisfied. Then φL < 0 if and only if E(λ) < 0.

Proof: Notice that

φL = −λ(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

κE(λ)
rL + κ

−B(λ)

E(λ)
rL

= −
[
λ

κ

[
(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

]
+ κB(λ)

]
rL
E(λ)

. (A.20)

Notice also that rL < 0, (1− βpL)κ2 > 0, (1− β)(1 + βpH − βpL)λ ≥ 0, and κB(λ) > 0. Thus, if

φL < 0, then E(λ) < 0. Similarly, if E(λ) < 0, then φL < 0.

Proposition 1.C: E(λ) < 0 if and only if p∗L < (Θ−pL).

Proof: It is convenient to view E(·) as a function of pH and pL instead of λ for a moment.

E(pH , pL) = βλpH − Γ

[
1− pL
σκ

(1− βpL + βpH)− pL
]

= βλpH − Γ

[
1

σκ
(1− βpL + βpH − pL + βp2

L − βpHpL)− pL
]

= −Γ
1

σκ
βp2

L + Γ

[
1

σκ
(1 + β + βpH) + 1

]
pL + βλpH − Γ

1

σκ
(1 + βpH)

:= q2p
2
L + q1pL + q0, (A.21)

where Γ := κ2 + λ(1− β) and

q0 := βλpH − Γ
1

σκ
(1 + βpH), (A.22)

q1 := Γ
[ 1

σκ
(1 + β + βpH) + 1

]
> 0, (A.23)

and

q2 := −Γ
1

σκ
β < 0. (A.24)

This function, E(·, ·), has the following properties.

Property 1: E(pH , 1) > 0 for any 0 ≤ pH ≤ 1.
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Proof:

E(pH , 1) = −Γ
1

σκ
β + Γ

[
1

σκ
(1 + β + βpH) + 1

]
+βλpH − Γ

1

σκ
(1 + βpH)

= Γ + βλpH > 0 (A.25)

Property 2: E(pH , pL) is maximized at pL > 1 for any 0 ≤ pH ≤ 1.

Proof:

∂E(pH , pL)

∂pL
= 2q2p

∗
L + q1 = 0

⇔ p∗L = − q1

2q2

=
Γ
[

1
σκ(1 + β + βpH) + 1

]
2Γ 1

σκβ

=

[
1
σκ(2β + (1− β) + βpH) + 1

]
2 1
σκβ

> 1. (A.26)

These two properties imply i) one root of E(·, pL) is below 1 and ii) E(·, pL) < 0 below this root.

Let’s call this root p∗L(Θ−pL). p∗L(Θ−pL) is given by

p∗L(Θ−pL) :=
−q1 +

√
q2

1 − 4q2q0

2q2
. (A.27)

If E(λ) < 0, then pL < p∗L(Θ−pL). Similarly, if pL < p∗L(Θ−pL), then E(λ) < 0. This completes

the proof of Proposition 1.C. Note that Proposition 1.C holds independently of whether the system

of linear equations (A.1)–(A.6) is satisfied or not.

Proposition 1.D: Suppose (A.1)–(A.6) are satisfied and E(λ) < 0. Then iH > 0 if and

only if pH < p∗H(Θ−pH ).

Proof:

First, notice that iH is given by
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iH =rH +
1

σ

[
−pHyH + pHyL

]
+
[
(1− pH)πH + pHπL

]
=rH +

1

σ
pH
−(1− βpL)κ− (1− β)(1 + βpH − βpL)λ/κ− βκpH

E(λ)
rL

+ (1− pH)
A(λ)

E(λ)
rL + pH

−B(λ)

E(λ)
rL

=− rL
E(λ)

βΓ

σκ
p2
H −

rL
E(λ)

[
(1− βpL)Γ

σκ
+ κ2 + λ

]
pH + rH . (A.28)

Since E(λ) < 0, iH > 0 requires

rL
βΓ

σκ
p2
H + rL

(
(1− βpL)Γ

σκ
+ κ2 + λ

)
pH − rHE(λ) > 0

⇔ rL
βΓ

σκ
p2
H +

[
rL

(
(1− βpL)Γ

σκ
+ κ2 + λ

)
− rHβλ+ rHΓβ

1− pL
σκ

]
pH

+rHΓ

(
1− pL
σκ

(1− βpL)− pL
)
> 0. (A.29)

Dividing both sides by Γ and by −rL, we obtain

− β

σκ
p2
H −

[
(1− βpL) + (1− pL)β rHrL

σκ
+
κ2 + (1− β rHrL )λ

Γ

]
pH

−
[

1− pL
σκ

(1− βpL)− pL
]
rH
rL

> 0.

(A.30)

Let

P (pH) := φ2p
2
H + φ1pH + φ0, (A.31)

where

φ0 := −
[

1− pL
σκ

(1− βpL)− pL
]
rH
rL

(A.32)

φ1 := −
(1− βpL) + (1− pL)β rHrL

σκ
−
κ2 + (1− β rHrL )λ

Γ
(A.33)

and

φ2 := − β

σκ
< 0. (A.34)
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Property 1: φ0 > 0

Proof: Notice that iH = rH > 0 when pH = 0. Since E(λ) < 0, the sign of iH is the same as the

sign of φ2p
2
H + φ1pH + φ0. Thus, φ0 > 0. This completes the proof of Property 1.

φ0 > 0 and φ2 < 0 imply that one root of (A.31) is non-negative and iH > 0 if and only if pH is

below this non-negative root, given by

p∗H(Θ−pH ) :=
−φ1 −

√
φ2

1 − 4φ0φ2

2φ2
. (A.35)

This completes the proof of Proposition 1.D.

With these four preliminary propositions (1.A–1.D), we are ready to prove our Proposition 1.

Proposition 1: There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of

linear equations (A.1)–(A.6) and satisfies φL < 0 and iH > 0 if and only if pL < p∗L(Θ−pL)

and pH < p∗H(Θ−pH ).

Proof of “if” part: Suppose that pL < p∗L(Θ−pL) and pH < p∗H(Θ−pH ). According to Proposition

1.A there exists a vector {yH , πH , iH , yL, πL, iL} that solves (A.1)–(A.6). According to Propositions

1.B and 1.C, E(λ) < 0 and φL < 0. According to Proposition 1.D and the fact that E(λ) < 0,

iH > 0. This completes the proof of the “if” part.

Proof of “only if” part: Suppose that φL < 0 and iH > 0. According to Proposition 1.A there

exists a vector {yH , πH , iH , yL, πL, iL} that solves (A.1)–(A.6). According to Propositions 1.B and

1.C, E(λ) < 0 and pL < p∗L(Θ−pL). According to Proposition 1.D and the fact that E(λ) < 0,

pH < p∗H(Θ−pH ). This completes the proof of the “only if” part.

A.2 Proof of Proposition 2

Proposition 2 characterizes the sign of inflation and output in both states. Using i) the restriction

on E(λ) (i.e. E(λ) < 0), ii) rL < 0, and iii) inequalities on A(λ), B(λ), C, and D given by equations

(A.10)–(A.13), it is straightforward to check that:
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πH =
A(λ)

E(λ)
rL ≤ 0, (A.36)

πL =
−B(λ)

E(λ)
rL < 0, (A.37)

yH =
βκpH
E(λ)

rL > 0, (A.38)

and

yL = −(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

κE(λ)
rL < 0. (A.39)

Inflation and output are negative in the low state. Inflation in the high state is negative, which is

what we call deflation bias. Positive output in the high state is consistent with negative inflation

in the high state and the optimality condition of the central bank (i.e., equation (15)).

A.3 Proof of Proposition 3

Proposition 3 characterizes how λ affects inflation and output in both states.

∂πH
∂λ

:=
A′(λ)E(λ)−A(λ)E′(λ)

E(λ)2
rL

=
A(λ)B′(λ)−A′(λ)B(λ)

E(λ)2
CrL

=
−βpHλ (1− β + βpH) + βpH

(
κ2 + (1− β + βpH)λ

)
E(λ)2

CrL

=
βpHκ

2

E(λ)2
CrL < 0, (A.40)

where A′(λ) and B′(λ) denote the partial derivatives of A(·) and B(·) with respect to λ.

∂πL
∂λ

:=
−B′(λ)E(λ) +B(λ)E′(λ)

E(λ)2
rL

=
A′(λ)B(λ)−A(λ)B′(λ)

E(λ)2
DrL

= −βpHκ
2

E(λ)2
DrL < 0 (A.41)
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∂yH
∂λ

:=
−βκpHE′(λ)

E(λ)2
rL

= −βκpH (A′(λ)D −B′(λ)C)

E(λ)2
rL

= − βκpH
E(λ)2

[βpH − (1− β)C] rL

= − βκpH
E(λ)2

[
βpH − (1− β)

(
1− pL
κσ

(1− βpL + βpH)− pL
)]

rL (A.42)

∂yL
∂λ

:= −
(1− β)(1− βpL + βpH)E(λ)−

(
(1− βpL)κ2 + (1− β)(1− βpL + βpH)λ

)
E′(λ)

κE(λ)2
rL

= −
[

(1− β)(1− βpL + βpH)(A(λ)D −B(λ)C)

κE(λ)2

−
(
(1− βpL)κ2 + (1− β)(1− βpL + βpH)λ

)
(A′(λ)D −B′(λ)C)

κE(λ)2

]
rL

=
βκpH
E(λ)2

[(1− β)C + (1− βpL)] rL < 0 (A.43)

A.4 Proof of Proposition 4

Proposition 4 states that welfare is maximized at λ = 0.

Society’s unconditional expected value is given by

EV (λ) =
1

1− β

[
1− pL

1− pL + pH
u(πH , yH) +

pH
1− pL + pH

u(πL, yL)

]
. (A.44)

To show that E[V (λ)] is maximized at λ = 0, we show that

∂EV (λ)

∂λ
< 0 (A.45)

for all λ ≥ 0.

The derivative of the unconditional expected value is given by

∂EV

∂λ
=

1

1− β

[
1− pL

1− pL + pH

∂u(πH , yH)

∂λ
+

pH
1− pL + pH

∂u(πL, yL)

∂λ

]
. (A.46)

The partial derivatives of society’s utility are given by
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∂u(πH , yH)

∂λ
:=

∂

∂λ

[
−1

2
(λ̄yH(λ)2 + πH(λ)2)

]
= −

(
λ̄
βκpH
E(λ)

rL

(
−βκpHE

′(λ)

E(λ)2
rL

)
+
A(λ)

E(λ)
rL
A′(λ)E(λ)−A(λ)E′(λ)

E(λ)2
rL

)
= −

λ̄β2κ2p2
HE
′(λ) + λβ2p2

HE(λ)− λ2β2p2
HE
′(λ)

E(λ)3
r2
L

=
β2κ2p2

H

E(λ)3

(
λ̄E′(λ) + λC

)
r2
L

=
β2κ2p2

H

E(λ)3

[
λ̄ (βpH − (1− β)C) + λC

]
r2
L. (A.47)

Note that we have already shown that the sign of the first term in square brackets, βpH − (1−β)C,

determines the sign of ∂yH
∂λ . If βpH − (1 − β)C > 0, then ∂yH

∂λ > 0 and ∂u(πH ,yH)
∂λ > 0. If instead

βpH − (1− β)C < 0, then the sign of ∂u(πH ,yH)
∂λ is ambiguous.

∂u(πL, yL)

∂λ
:=

∂

∂λ

[
−1

2
(λ̄yL(λ)2 + πL(λ)2)

]
=

βpH
E(λ)3

(
λ̄
[
(1− βpL)κ2 + (1− β)(1 + βpH − βpL)λ

][
(1− β)C + (1− βpL)

]
+ κ2

[
κ2 + λ(1− β(1− pH))

]
(1 + C)

)
r2
L

:=
βpH
E(λ)3

(
λ̄Φ1(λ) + Φ2(λ)

)
r2
L < 0, (A.48)

where

Φ1(λ) := Φ1,1 + Φ1,2λ, (A.49)

Φ2(λ) := Φ2,1 + Φ2,2λ, (A.50)

and

Φ1,1 := (1− βpL)κ2
[
(1− β)C + (1− βpL)

]
> 0, (A.51)

Φ1,2 :=
[
(1− β)C + (1− βpL)

]
(1− β)(1 + βpH − βpL) > 0, (A.52)

Φ2,1 := κ4(1 + C) > 0, (A.53)

and

Φ2,2 := κ2(1− β(1− pH))(1 + C) > 0. (A.54)

Hence,
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∂EV

∂λ
=

(1− β)−1r2
L

1− pL + pH

(
(1− pL)

β2κ2p2
H

E(λ)3

[
λ̄ (βpH − (1− β)C) + λC

]
+ pH

βpH
E(λ)3

(
λ̄Φ1(λ) + Φ2(λ)

))
=

(1− β)−1βp2
Hr

2
L

(1− pL + pH)E(λ)3

(
βκ2(1− pL)

[
λ̄ (βpH − (1− β)C) + λC

]
+
(
λ̄Φ1(λ) + Φ2(λ)

))
. (A.55)

Let

Ω(λ) := βκ2(1− pL)(βpH − (1− β)C)λ̄+ βκ2(1− pL)Cλ+ λ̄(Φ1,1 + Φ1,2λ) + Φ2,1 + Φ2,2λ. (A.56)

If Ω(λ) > 0 for all λ ≥ 0, then ∂EV (λ)
∂λ < 0 for all λ ≥ 0. Notice that Ω′(λ) is positive since the

coefficients on λ are all positive. Thus, we only need to show Ω(0) > 0 to show that Ω(λ) > 0 for

all λ ≥ 0.

Ω(0) = βκ2(1− pL)
[
βpH − (1− β)C

]
λ̄+ λ̄Φ1,1 + Φ2,1

=
[
βκ2(1− pL)

[
βpH − (1− β)C

]
+ Φ1,1

]
λ̄+ Φ2,1

=
[
β2κ2(1− pL)pH + (1− β)2κ2C + (1− βpL)2κ2

]
λ̄+ κ4(1 + C) > 0, (A.57)

given that C > 0 for the equilibrium to exist and λ̄ > 0. This completes the proof.

B Welfare gains of conservatism

In the baseline calibration of the two-state shock model, the welfare gain of appointing a fully

conservative central banker is about 0.05 percent of the efficient level of consumption. This number

clearly depends on the frequency, persistence, and severity of the ZLB episodes. Figure 7 shows

this dependency. The top-left panel shows that the welfare gain of conservatism increases with

the frequency of the shock, and it reaches about 0.3 percent when the frequency is 1.5 percent.

According to the top-right panel, the welfare gain increases sharply with persistence, exceeding 2

percent at pL = 0.9. Finally, the welfare gain increases with the severity of the shock (the absolute

value of dL), as shown in the bottom-left panel.

C The model with persistent cost-push shocks

In the main text, we analyzed how the introduction of i.i.d. cost-push shocks affects the optimal

weight placed on the output gap stability term. In this section, we relax the i.i.d. assumption to

consider persistent cost-push shocks. In particular, we consider cases in which the probability of

staying at the high (or low) cost-push state tomorrow when today’s cost-push state is high (or low)

is either 0.6 or 0.8, as opposed to 0.5 in the baseline i.i.d. case.

In the top-left panel of Figure 8, the blue and red dashed lines show how the optimal weight on
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Figure 7: Welfare gains of conservatism (Two-state shock model)
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Note: The figure displays how the welfare gains of conservatism (λ = 0) relative to the baseline regime (λ = λ̄)

depend on the frequency, persistence and size of the demand shock.

the output gap volatility term varies with the size of the cost-push shocks in the economies with

persistence of 0.6 and 0.8, respectively. The black line is for the optimal weight in the baseline

economy with non-persistent cost-push shocks. The panel shows that the optimal weight is lower

when cost-push shocks are more persistent. The reason is as follows. In the model without the

ZLB, the optimal weight is the same as the true weight if the shock is not persistent. When cost-

push shocks are persistent, the optimal weight is smaller than the true weight because inflation is

expected to be non-zero in the future and a smaller weight on the output gap stabilization term

reduces the deviation of expected inflation from zero. As such, the more persistent the cost-push

shocks are, the smaller the optimal weight is. As we saw in the main text, the introduction of the

ZLB makes it desirable to place a lower weight on the output gap stabilization term. The fact that

the optimal weight is lower when cost-push shocks are more persistent in the model with the ZLB

is inherited from the same feature in the model without the ZLB.

The top-right and bottom two panels shows how the optimal weight varies with the frequency,

persistence, and size of the crisis shock. Consistent with the baseline model with non-persistent

cost-push shocks, the optimal weight declines as the frequency, persistence, and severity of the

crisis increases with the same non-monotonicity discussed in the main text. Consistent with our

discussion in the previous paragraph, the optimal weight is generally lower when cost-push shocks

are more persistent. However, due to the non-monotonicity, there are regions of parameter values

under which the optimal weight is larger with more persistent cost-push shocks. For example, the
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Figure 8: Optimal weight in the model with persistent cost-push shocks
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Note: The figure displays how the optimal weight on output stabilization λ depends on the size of the cost-push shock,

and the frequency, persistence and size of the demand shock. Under the baseline case, the probability of staying at

the high (low) cost-push state tomorrow when today’s cost-push state is high (low) is 0.5. Under the “moderate”

and “high” persistence cases, that probability is 0.6 and 0.8., respectively.
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optimal weight is larger with persistence of 0.8 than with persistence of 0.6 for the values of pH

between 0.01 and 0.013 and for the values of dL between -0.021 and -0.018.

D Computational algorithm for the continuous-state model

Let Z = [π, y]′ and Z̃ = [Z ′, i]′. We approximate Z by a linear combination of n basis functions ψi,

i = 1, ..., n. In matrix notation,

Z (d) ≈ CΨ (d) , (D.1)

where

C =

(
cπ1 · · · cπn

cy1 · · · cyn

)
, Ψ (d) =


ψ1 (d)

...

ψn (d)

 .

The coefficients cji , i = 1, 2, ..., n; j ∈ {π, y}, are set such that (D.1) holds exactly at n selected

collocation nodes collected in vector d

Z
(
d(k)

)
= CΨ

(
d(k)

)
,

for k = 1, ..., n, where d(k) refers to the kth element of d. We use linear splines as basis functions

and choose the breakpoints such that they coincide with the collocation nodes.

The iterative solution algorithm to obtain the policy function approximations then works as follows.

We start with an initial guess on the coefficient matrix C(0). For fixed C(s) in iteration s, we first

update the expectations functions,

Eπ(s)
(
d(k)

)
=

m∑
l=1

$lC
(s)
(1,:)Ψ

(
ρdd(k) + ε(l)

)
and

Ey(s)
(
d(k)

)
=

m∑
l=1

$lC
(s)
(2,:)Ψ

(
ρdd(k) + ε(l)

)
,

for k = 1, ..., n. We use a Gaussian quadrature scheme to discretize the normally distributed

random variable, where ε is a m × 1 matrix of quadrature nodes and $ is a vector of length m

containing the weights.

Assuming first that the zero bound is not binding at any collocation node, the optimality

conditions for the discretionary policy regime imply

Z̃(s)
(
d(k)

)
= A−1 ·B +A−1 · F · EZ(s)

(
d(k)

)
+A−1 ·D · d(k),
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for k = 1, ..., n, where

A =

 1 −κ 0

0 1 σ

κ λ 0

 , B =

 0

σr∗

0

 , F =

 β 0

σ 1

0 0

 , D =

 0

1

0

 .

For those k for which the zero lower bound is violated—i.e., i(s)
(
d(k)

)
< 0—matrix A in the update

is replaced by

Â =

 1 −κ 0

0 1 σ

0 0 1

 .

We then update C(s+1) =
[
Z(s)

(
d(1)

)
· · · Z(s)

(
d(n)

)]
and continue the iteration procedure until∥∥vec (C(s+1) − C(s)

)∥∥
∞ < δ.

The collocation nodes are equally distributed with a support covering ± 4 unconditional standard

deviations of the exogenous state variable. We use MATLAB routines from the CompEcon toolbox

of Miranda and Fackler (2002) to obtain the Gaussian quadrature approximation of the innovations

to the demand shock, and to evaluate the spline functions.

E Existence of other Markov-Perfect Equilibria

While we focus on the standard Markov-Perfect equilibrium in which the ZLB constraint binds in

the low state but not in the high state, there are potentially three other types of Markov-Perfect

equilibria: i) one in which the ZLB constraint binds in both states (the deflationary Markov-Perfect

equilibrium), ii) one in which the ZLB constraint does not bind in both states (the ZLB-free Markov-

Perfect equilibrium), and iii) one in which the ZLB binds in the high state but not in the low state

(the topsy-turvy Markov-Perfect equilibrium). In this section, we examine whether and under what

conditions any of these other types of Markov-Perfert equilibria exist. Our main results are that

i) the conditions for the existence of the deflationary Markov-Perfect equilibrium are the same as

those for the existence of the standard Markov-Perfect equilibrium and ii) the other two types do

not exist under any parameter configurations.14

14There is a continuum of sunspot equilibria which may randomly move between the standard and deflationary
Markov-Perfect equilibria. Characterizing the conditions for the existence of such sunspot equilibria is outside the
scope of the paper.
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E.1 Existence of the deflationary Markov-Perfect equilibrium

The deflationary Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations—

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + r∗

]
+ dH , (E.1)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (E.2)

iH = 0, (E.3)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + r∗

]
+ dL, (E.4)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (E.5)

and

iL = 0, (E.6)

—and satisfies the following two inequality constraints:

φH < 0 (E.7)

and

φL < 0. (E.8)

φH and φL denote the Lagrangean multipliers on the ZLB constraint in the high state and in the

low state:

φH := λyH + κπH (E.9)

and

φL := λyL + κπL. (E.10)

The following proposition states that the conditions for the existence of the deflationary Markov-

Perfect equilibrium are identical to the conditions for the existence of the standard Markov-Perfect

equilibrium.

Proposition 5: The deflationary Markov-Perfect equilibrium exists if and only if

pL ≤ p∗L(Θ(−pL))

and

pH ≤ p∗H(Θ(−pH)),

where the cutoff values p∗L(Θ(−pL)) and p∗H(Θ(−pH)) are defined by (A.27) and (A.35) in Appendix

A. We first prove six preliminary propositions, then use them to prove Proposition 5.
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Let

Ã := −
(pH
σκ

(1− βpL + βpH) + pH

)
, (E.11)

B̃ := −Ã− 1, (E.12)

and

Ẽ := ÃD − B̃C

= −Ã+ C, (E.13)

where C and D < 0 are defined in (A.12) and (A.13).

Assumption 5.A: Ẽ 6= 0.

Throughout the proof, we will assume that Assumption 5.A holds.

Proposition 5.A: There exists a vector {yH , πH , iH , yL, πL, iL} that solves (E.1)–(E.6).

Proof :

Rearranging the system of equations (E.1)–(E.6) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

[
Ã B̃

C D

][
πL

πH

]
=

[
rH

rL

]

⇒

[
πL

πH

]
=

1

Ẽ

[
D −B̃
−C Ã

][
rH

rL

]
, (E.14)

where rL = r∗ + 1
σdL and rH = r∗ + 1

σdH .

Thus,

πH :=
Ã

Ẽ
rL −

C

Ẽ
rH (E.15)

and

πL :=
−B̃
Ẽ
rL +

D

Ẽ
rH . (E.16)

From the Phillips curves in both states, we obtain

yH =
(1− β)Ã− βpH

κẼ
rL −

(1− β)C − βpH
κẼ

rH (E.17)
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and

yL =
(1− β)Ã+ (1− βpL)

κẼ
rL −

(1− β)C + (1− βpL)

κẼ
rH . (E.18)

Proposition 5.B: Suppose (E.1)–(E.6) are satisfied. Then φL < 0 only if Ẽ > 0.

Proof by contradiction:

First, notice that

φL =
1

Ẽ

[
−(1 + C)κrH − (1− β)C

λ

κ
rH − (1− βpL)

λ

κ
rH + (1 + Ã)κrL +

λ

κ
(1− β)ÃrL +

λ

κ
(1− βpL)rL

]
.

(E.19)

Suppose that Ẽ < 0. From the equation above we know that, given Ẽ < 0, φL < 0 if and only

if

−(1+C)κrH−(1−β)C
λ

κ
rH−(1−βpL)

λ

κ
rH+(1+Ã)κrL+

λ

κ
(1−β)ÃrL+

λ

κ
(1−βpL)rL > 0. (E.20)

Collecting terms, this condition can be simplified to(
κ+

λ

κ
(1− βpL)

)
[(1 +A)rL − (1 + C)rH ] > 0. (E.21)

From (E.13), we know that Ẽ < 0 if and only if C < Ã, where Ã < 0. Furthermore, from (A.12)

we know that C > −1. Suppose C → −; then A > −1, which proves that (E.21) cannot hold.

Proposition 5.C: Suppose (E.1)-(E.6) are satisfied and Ẽ > 0. Then φL < 0 if φH < 0.

Proof : This follows directly from noticing that

φL = φH +
κ2 + λ

κẼ
(rL − rH) . (E.22)

Proposition 5.D: Suppose (E.1)–(E.6) are satisfied and Ẽ > 0. Then φH < 0 if and only

if pH < p∗H(Θ−pH ).

Proof :

First, notice that
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φH =
1

Ẽ

(
[−Cκ− (1− β)

λ

κ
C + β

λ

κ
pH ]rH + [κÃ+ (1− β)

λ

κ
Ã− βλ

κ
pH ]rL

)
. (E.23)

Since Ẽ > 0, φH < 0 requires

−Cκ− (1− β)
λ

κ
C + β

λ

κ
pH ]rH + [κÃ+ (1− β)

λ

κ
Ã− βλ

κ
pH ]rL < 0. (E.24)

Multiplying both sides by κ
Γ

1
rL

and collecting terms, we get

− β

σκ
p2
H −

(
(1− βpL) + (1− pL)β rHrL

σκ
+
κ2 + (1− β rHrL )λ

Γ

)
pH

−
(

1− pL
σκ

(1− βpL)− pL
)
rH
rL

> 0. (E.25)

Let

P (pH) := φ2p
2
H + φ1pH + φ0 : (E.26)

where

φ0 := −
[

1− pL
σκ

(1− βpL)− pL
]
rH
rL

φ1 := −
(1− βpL) + (1− pL)β rHrL

σκ
−
κ2 + (1− β rHrL )λ

Γ

φ2 := − β

σκ
< 0, (E.27)

which is similar to the definition in Appendix A. φ0 > 0 and φ2 < 0 imply that one root of (E.26)

is non-negative and φH < 0 if and only if pH is below this non-negative root, given by

p∗H(Θ−pH ) :=
−φ1 −

√
φ2

1 − 4φ0φ2

2φ2
. (E.28)

This completes the proof of Proposition 5.D.

Proposition 5.E: Ẽ > 0 and pH < p∗H(Θ−pH ) only if E(λ) < 0.

Proof :

Suppose that Ẽ > 0 and pH < p∗H(Θ−pH ). Then Ẽ + P (pH) > 0.
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Ẽ + P (pH) =
β

σκ
p2
H +

(
1 +

(1− βpL) + (1− pL)β

σκ

)
pH +

(
1− pL
σκ

(1− βpL)− pL
)

− β

σκ
p2
H −

(
(1− βpL) + (1− pL)β rHrL

σκ
+
κ2 + (1− β rHrL )λ

Γ

)
pH

−
(

1− pL
σκ

(1− βpL)− pL
)
rH
rL

=

[
β
λ

Γ
pH − β

1− pL
σκ

pH −
(

1− pL
σκ

(1− βpL)− pL
)](

rH
rL
− 1

)
. (E.29)

Since
(
rH
rL
− 1
)
< 0, the following condition has to hold:

β
λ

Γ
pH − β

1− pL
σκ

pH −
(

1− pL
σκ

(1− βpL)− pL
)
< 0. (E.30)

Collecting terms, we get

−Γ
1

σκ
βp2

L + Γ

[
1

σκ
(1 + β + βpH) + 1

]
pL + βλpH − Γ

1

σκ
(1 + βpH) = E(λ) < 0. (E.31)

This completes the proof of Proposition 5.E. Note that Proposition 5.E holds independently of

whether the system of linear equations (E.1)–(E.6) is satisfied or not.

Proposition 5.F: E(λ) < 0 only if Ẽ > 0.

Proof : This follows directly from noticing that

Ẽ = −E(λ)

Γ
+
βλ

Γ
pH +

1

σκ
(βpH + 1 + β(1− pL)) pH . (E.32)

Note that Proposition 5.F holds independently of whether the system of linear equations (E.1)–

(E.6) is satisfied or not.

With these six preliminary propositions (5.A–5.F), we are ready to prove Proposition 5.

Proposition 5: There exists a vector {yH , πH , iH , yL, πL, iL} that solves the system of

linear equations (E.1)–(E.6) and satisfies φL < 0 and φH < 0 if and only if pL < p∗L(Θ−pL)

and pH < p∗H(Θ−pH ).

Proof of “if” part: According to Proposition 5.A, there exists a vector {yH , πH , iH , yL, πL, iL} that

solves (E.1)–(E.6). Suppose that pL < p∗L(Θ−pL) and pH < p∗H(Θ−pH ). According to Proposition

1.C (which does not rely on the system of linear equations), E(λ) < 0. According to Proposition
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5.F, then Ẽ > 0. According to Proposition 5.D, this implies φH < 0. Finally, according to Propo-

sition 5.C, this implies φL < 0. This completes the proof of “if” part.

Proof of “only if” part: According to Proposition 5.A, there exists a vector {yH , πH , iH , yL, πL, iL}
that solves (E.1)–(E.6). Suppose that φL < 0 and φH < 0. According to Proposition 5.B, Ẽ > 0.

According to Proposition 5.D, then pH < p∗H(Θ−pH ). According to Proposition 5.E, this implies

E(λ) < 0. According to Proposition 1.C (which does not rely on the system of linear equations),

pL < p∗L(Θ−pL). This completes the proof of the “only if” part.

E.2 Nonexistence of the topsy-turvy Markov-Perfect equilibrium

The topsy-turvy Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations—

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + r∗

]
+ dH , (E.33)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (E.34)

iH = 0, (E.35)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + r∗

]
+ dL, (E.36)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (E.37)

0 = λyL + κπL, (E.38)

—and satisfies the following two inequality constraints:

φH < 0 (E.39)

and

iL > 0 (E.40)

φH denotes the Lagrangean multiplier on the ZLB constraint in the high state:

φH := λyH + κπH . (E.41)

Proposition 6: The topsy-turvy Markov-Perfect equilibrium does not exist.

We first prove three preliminary propositions, then use them to prove Proposition 6.
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Let

Ĉ(λ) := κ2 + λ (1− βpL) , (E.42)

D̂(λ) := −βλ (1− pL) , (E.43)

and

Ê(λ) := ÃD̂(λ)− B̃Ĉ(λ), (E.44)

where Ã and B̃ are defined in (E.11) and (E.12).

Assumption 6.A: Ê(λ) 6= 0.

Throughout the proof, we will assume that Assumption 6.A holds.

Proposition 6.A: There exists a vector {yH , πH , iH , yL, πL, iL} that solves (E.33)–(E.38).

Proof :

Rearranging the system of equations (E.33)–(E.38) and eliminating yH and yL, we obtain two

unknowns for πH and πL in two equations:

[
Ã B̃

Ĉ(λ) D̂(λ)

][
πL

πH

]
=

[
rH

0

]

⇒

[
πL

πH

]
=

1

Ê(λ)

[
D̂(λ) −B̃
−Ĉ(λ) Ã

][
rH

0

]
, (E.45)

where rH = r∗ + 1
σdH .

Thus,

πH := − Ĉ(λ)

Ê(λ)
rH (E.46)

and

πL :=
D̂(λ)

Ê(λ)
rH . (E.47)

From the Phillips Curves in both states, we obtain

yH = −(1− β)Ĉ(λ) + βpHΓ

κÊ(λ)
rH (E.48)

and

yL = −(1− βpL)D̂(λ) + (1− pL)βĈ(λ)

κÊ(λ)
rH . (E.49)
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Proposition 6.B: Suppose (E.33)–(E.38) are satisfied. Then φH < 0 if and only if

Ê(λ) > 0.

Proof :

Notice that

φH = − 1

κÊ(λ)

(
(κ2 + (1− β))Ĉ(λ) + βpHΓ

)
rH , (E.50)

where (κ2 + (1− β))Ĉ(λ) + βpHΓ > 0 and rH > 0. Hence, φH < 0 if and only if Ê(λ) > 0.

Proposition 6.C: Suppose (E.33)–(E.38) are satisfied. Then iL > 0 only if Ê(λ) < 0.

Proof :

Notice that

iL = rL −
1

κÊ(λ)

[
−κpLD̂(λ) + κ(1− pL)Ĉ(λ) +

1

σ
(1− pL)(

(1− β)Ĉ(λ) + βpHΓ + (1− βpL)D̂(λ) + (1− pL)βĈ(λ)
)]
rH , (E.51)

= rL −
1

κÊ(λ)

[
−κpLD̂(λ) + κ(1− pL)Ĉ(λ) +

1

σ
(1− pL)(

(1− βpL)Ĉ(λ) + βpHΓ + (1− βpL)D̂(λ)
)]
, (E.52)

= rL −
1

κÊ(λ)

[
−κpLD̂(λ) + κ(1− pL)Ĉ(λ) +

1

σ
(1− pL) (βpH + (1− βpL)) Γ

]
rH , (E.53)

where −κpLD̂(λ)+κ(1−pL)Ĉ(λ)+ 1
σ (1−pL) (βpH + (1− βpL)) Γ > 0, rH > 0, and rL < 0. Hence,

iL > 0 only if Ê(λ) < 0.

With these three preliminary propositions (6.A-6.C), we are ready to prove Proposition 6.

Proposition 6: There exists no vector {yH , πH , iH , yL, πL, iL} that solves the system of

linear equations (E.33)–(E.38) and satisfies iL > 0, φH < 0.

Proof by contradiction: According to Proposition 6.A, there exists a vector {yH , πH , iH , yL, πL, iL}
that solves (E.33)–(E.38). Suppose that φH < 0 and iL > 0. According to Proposition 6.B, φH < 0

implies Ê(λ) > 0. According to Proposition 6.C, iL > 0 implies Ê(λ) < 0, which contradicts

(iL > 0, φH < 0).
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E.3 Nonexistence of the ZLB-free Markov-Perfect equilibrium

The ZLB-free Markov-Perfect equilibrium is given by a vector {yH , πH , iH , yL, πL, iL} that solves

the following system of linear equations—

yH =
[
(1− pH)yH + pHyL

]
+ σ

[
(1− pH)πH + pHπL − iH + r∗

]
+ dH , (E.54)

πH = κyH + β
[
(1− pH)πH + pHπL

]
, (E.55)

0 = λyH + κπH , (E.56)

yL =
[
(1− pL)yH + pLyL

]
+ σ

[
(1− pL)πH + pLπL − iL + r∗

]
+ dL, (E.57)

πL = κyL + β
[
(1− pL)πH + pLπL

]
, (E.58)

(E.59)

and

0 = λyL + κπL, (E.60)

—and satisfies the following two inequality constraints:

iH > 0 (E.61)

and

iL > 0. (E.62)

Proposition 7: The ZLB-free Markov-Perfect equilibrium does not exist.

Proof :

Let

Ê =
[
1− β(1− pH) +

κ2

λ

]
(1− βpL +

κ2

λ
)− β2pH(1− pL). (E.63)

Assumption 7.A: Ê 6= 0.

Throughout the proof, we will assume that Assumption 7.A holds.

Notice that iH and iL only appear in the consumption Euler equations. Thus, we can first find

a vector of {yH , πH , yL, πL} that satisfies the Phillips curves and the government’s optimality con-

dition in both states, then use the two consumption Euler equations to find iH and iL. Rearranging

the system of equations (E.55), (E.56), (E.58), and (E.60) and eliminating yH and yL, we obtain

two unknowns for πH and πL in two equations:

πH = −κ
2

λ
πH + β

[
(1− pH)πH + pHπL

]
(E.64)
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and

πL = −κ
2

λ
πL + β

[
(1− pL)πH + pLπL

]
(E.65)

⇒

[
1− β(1− pH) + κ2

λ −βpH
−β(1− pL) 1− βpL + κ2

λ

][
πH

πL

]
=

[
0

0

]
(E.66)

⇒

[
πH

πL

]
=

1

Ê

[
1− βpL + κ2

λ β(1− pL)

βpH 1− β(1− pH) + κ2

λ

][
0

0

]
=

[
0

0

]
. (E.67)

From the Phillips curves in both states, we obtain

yH = 0 (E.68)

and

yL = 0. (E.69)

From the consumption Euler equations in both states, we obtain

iH = r∗ +
dH
σ

> 0 (E.70)

and

iL = r∗ +
dL
σ
< 0. (E.71)

These two inequalities hold because we assume that dH > −σr∗ and dL < −σr∗ (see Section 2

in the main text). Thus, the inequality condition for the policy rate in the low state is violated.

Accordingly, there is no vector that solves (E.54)–(E.60) and satsifies both iH > 0 and iL > 0.
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